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Abstract Permutational isomers of ligands substituted on a molecular skeleton are
studied under a condition on the ligand placement which excludes a second ligand of
the same type at a neighboring skeletal site. General theory to treat such a circumstance
is developed to identify a correspondence between isomers and suitable double cosets
of groups involving permutations of ligands amongst skeletal sites. Then this theory is
illustratively applied for a selection of skeletons, including an experimentally realized
hexamalono-buckminsterfullerene skeleton, with 12 ligation locations.

Keywords Symmetry · Isomers · Enumeration · Permutations · Double cosets ·
Exclusionary ligation · Hexamalono-buckminsterfullerene

1 Introduction

The characterization of arrangements of substituents on a fixed skeleton is a long-
studied isomer problem in chemistry. In particular Polya gave [1–3] a seminal formu-
lation and constructive enumeration, the ideas being of a general sort to enumerate
symmetry mediated equivalence classes of mappings, often now described in many
mathematics combinatorics texts, typically with little or no reference to chemistry.
There are a couple collections [4,5] of chemical applications. Read [6] reviews Polya’s
work, its chemical aspects, and subsequent work including that in the chemical lit-
erature up through ∼1985. There are more recent chemical reviews [7–10], while
Fujita’s [11] and El-Basil’s [12] books describe substitutional-isomer enumeration
for isomers of particular subsymmetries of the overall symmetry of the parent skel-
eton. Kerber [13] gives a comprehensive description of the different mathematical
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developments concerning this general subject describable as “enumeration under
group action”. Notably Kerber’s book includes Ruch et al. [14] elegant recasting
of the theory in terms of double cosets, such as typically is not presented in combi-
natorics texts. This approach makes little use of auxiliary nomenclature and concepts
not already present in group theory—while at the same time Ruch et al. approach uses
more group-theoretic ideas than explicitly identified in Polya’s approach. Ultimately it
is not so clear whether the two approaches are fully equivalent, in that Polya’s original
approach entailed a special choice of one of the subgroups (the “ligand subgroup”)
appearing more generally in the double cosets of the theory of Ruch et al. And though
deBruijn [15] has extended the Polya enumeration theory to allow a more general such
subgroup, there is a yet further generalization [16] of the categories of equivalence
classes possible within the framework of Ruch et al.—to so-called “double classes”.

Throughout all this work the qualitative symmetry-mediated behavior of the ligands
being substituted on the skeleton is centrally relevant. Different qualitative presump-
tions concerning these ligands have been made at different times:

• Polya’s work [1,2] assumed geometrically structureless ligands attached “indepen-
dently” at skeletal sites. That is, the ligands are presumed to be placeable one to a
site, with the ligands only distinguished by labels (or “colors” in Polya’s language)
independent of the group action and position.

• Hasselbarth and Ruch extended [17] applications to ligands which have an inter-
nal chirality, so that improper rotations on the system as a whole (including both
skeleton and ligands) change the ligands’ chiralities. See also Fujita’s later work
[11].

• The possibility of bidentate (or more generally polydentate) ligands were treated
[18], though the “solution” is not what is frequently desired as it allows all possible
bindings between the skeletal sites and the chelate ligation sites (so that different
ends of a bidentate ligand may be inordinately far apart).

• Special chemical "ligational" substructures were considered [19] which only in a
loose sense could be termed ligands, changing under certain (even “proper-rota-
tional”) symmetry transformations on the system (the ligational substructures in
effect being part of the skeleton).

• Balasubramanian [7] generalized the idea of independent ligands to allow them to
transform like selected non-totally symmetric irreducible representations, so that,
the ligand designation might incorporate their internal states (say of spin).

The bulk of the chemical work [4,5] follows Polya with independent structureless
ligands, as also does the work of Fujita [11] and El-Basil [12] on subsymmetry iso-
mer enumeration, and finally the great bulk of Kerber’s book [13]. Especially in one
commentary [18] it was noted that there are very many chemical isomer-enumeration
problems not readily treatable by Polya’s classical theory, or even by various exten-
sions [20–24] of it—one such problem being that where the presence of a ligand of
one type at a site selects for another at a neighboring site.

Here one special sort of problem where a ligand at one site precludes like ligands
at neighboring sites is addressed—and “solved”. This special “ligand exclusionary”
problem occurs when the various sites fall into pairs such that ligation at one site of
a pair solely excludes ligation at the other site of the pair. A particular case of this
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Fig. 1 The hexamalonic-buck-
minsterfullerene species of Th
symmetry. The malonic acid
moieties are appear around the
periphery, with the O & H atoms
suppressed. The C60 atoms on
the “back-side” of the
C60-skeleton are with 6 of them
hidden behind the central 6
carbons of the “front-side”

circumstance occurs with the decarboxylation of a highly symmetric hexa-malonic
acid derivative of buckminsterfullerene, C60[:C(CO2H)2]6, such as experimentally
obtained and investigated by Cerar et al. [25]. This novel C60-derivative is of Th sym-
metry and is depicted in Fig. 1. There each degree-1 site is the C atom of a carboxylate
group which is reactive to decarboxylation if the nearby carboxylate position is not
already decarboxylated. That is, the ligand substitution here is of an H atom in place
of a carboxylic-acid group, but such that no more than one carboxylate group of any
one of the malonic acid moieties may be so substituted (i.e., with elimination of CO2).
The general theory for such exclusionary substitution then is here developed within
the framework of double cosets. This hexa-malonic-C60 example, as well as a few
related examples, are illustratively treated by this theory.

1.1 General formulation

A set S of skeletal sites is presumed, each site to be occupied by a ligand from a ligand
set L . In the formulation of Ruch et al. [14] the situation bears a close similarity to
real-space model building (and to molecular reality) where the number N of ligands
to be attached to the skeleton exactly matches the number of skeletal sites to which
they are to be attached. That is, the sets S and L have the same number N of members,
and one may assume a special one-to-one correspondence ϕ from L to S specifying a
reference assignment of ligands to skeletal sites. Different arrangements (or “config-
urations” of ligands on sites) may be associated with permutations of the sites relative
to the ligands (after making the correspondence ϕ) or with permutations of the ligands
relative to the sites (before making the correspondence ϕ). Thus there are two different
sets of permutations, SS and SL acting either on S or L , and one might be tempted to
take two notations for the two types of permutations. But we use just a single notation
for the members of this single overall abstract group S[N ] of permutations on the
set [N ] ≡ {1, 2, 3, . . . , N } of position labels, and we use the position of P ∈ S[N ]
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relative to ϕ to indicate whether P acts on S or on L . That is, in Pϕ, the permutation
P ∈ S[N ] acts on site labels, whereas in ϕP , now P acts on ligand labels. Of course
there is redundance in permuting ligands relative to sites and in permuting sites relative
to ligands—this fact being manifested by the relation Pϕ = ϕP−1. Moreover, there
are fundamental symmetries involving both the sites and the ligands, such that these
symmetries dictate the “isomeric” equivalence of different arrangements. The sites are
considered to have a skeletal symmetry group GS consisting of (certain) permutations
of the skeletal-site labels. Also the ligands are considered to have a ligand symmetry
group GL consisting of permutations of the ligand labels. Arrangements resulting from
the permutation of sites by elements of GS or of the ligands by elements of GL are
considered equivalent—that is, these arrangements identify the same isomer. Thence
for PS ∈ GS , PL ∈ GL , and Q ∈ S[N ], the arrangements PSϕQ PL and ϕQ are
equivalent. But also this means that ϕP−1

S Q PL and ϕQ are equivalent, and indeed
we might say that P−1

S Q PL and Q are equivalent, and denote this by P−1
S Q PL ∼ Q.

As a consequence

P ∼ Q ⇔ P ∈ GS QGL ≡ {AQ B |A ∈ GS, B ∈ GL } (1)

this set being termed a double coset—or more precisely a (GS,GL)-double coset, in
S[N ]. That is, the isomers are in one-to-one correspondence with these double cosets.
See also some reviews [10,13].

This formalism is somewhat different than that of Polya, and actually applies to
circumstances beyond those originally identified by Polya, including our considered
circumstance, with exclusionary locationing of ligands. As noted by Ruch et al. [14]
the enumeration of (A,B)-double cosets in a group G is given by a convenient formula
of Frobenius [26]

z = |G|
|A| |B|

G∑

ρ

∣∣A ∩ Cρ

∣∣ ∣∣B ∩ Cρ

∣∣
∣∣Cρ

∣∣ (2)

where |T | denotes the order of a set T , and the sum is over conjugacy classes Cρ of the
parent group G. Since via (1) double cosets correspond to isomers, the enumeration
of isomers is then accomplished by (2).

Though not needed to make the new development of the following section, it is
informative to recall the traditional case of independent ligands without exclusionary
locationing, for which G = S[N ]. Then the conjugacy classes (of S[N ]) have an espe-
cially simple and well-known characterization, as all those permutations with a given
(disjoint) cycle structure, whence the class label ρ is identified to a partition of N , and
conveniently represented as

ρ = (1ρ12ρ2 3ρ3 . . . NρN ) (3)

where ρm is the number of disjoint m-cycles occurring in a permutation of this class
(Thence

∑
i iρi = N ). Moreover, the number of elements of Cρ is given by a simple

(and well known) formula
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∣∣Cρ

∣∣ = N !
∏

i
iρi · ρi ! (4)

For a particular skeletal group, it often occurs that the group A = GS has elements in
relatively few classes of S[N ], so that only a few

∣∣A ∩ Cρ

∣∣ = ∣∣GS ∩ Cρ

∣∣ appearing
in (2) are �= 0. The traditional Polya problem is solved taking B to be a product
of disjoint symmetric groups for separate sets of distinguishable ligands—that is, if
L = ⋃

β Bβ with Bβ the set of (identical) ligands of type β, then B = GL = ∏×
β SBβ ,

and the intersections
∣∣B ∩ Cρ

∣∣ (for ρ for which
∣∣GS ∩ Cρ

∣∣ �= 0) are relatively easy
to determine, and some of these may turn out to be 0. This then provides a means for
enumerating isomers [via (2)], such as is much more efficient than hand generation if
the circumstance is at all complicated. Indeed it often is quite efficient even when the
number of isomers precludes their individual computer generation.

2 The case with exclusionary ligands

The implementation of our condition of a ligand of a given type excluding another
of the same type at a neighbor site is straight-forward so long as each site has just
one such neighbor site, as we now assume. A site and its unique neighbor subject to
exclusion are termed a near-pair. Then the set of N sites is partitioned into n ≡ N/2
near-pairs. The ligand set L is presumed to include no more of the exclusionary ligands
than may be accommodated, and the reference assignment ϕ is imagined to satisfy this
exclusionary condition. Then not all the arrangements (of ligands on sites) are to be
allowed—more particularly only those which do not permute two of the exclusionary
ligands to a near-pair of sites of S. That is, not all P ∈ S[N ] are to be allowed for
arrangements ϕP—indeed we may constrain them to be a member of a subgroup of
S[N ] which permutes near-pairs as a whole amongst themselves, while also possibly
interchanging the two sites within a near-pair. Then let S∗[n] denote the group which
permutes whole near-pairs around amongst themselves, and let Ei ≡ {I, εi } denote
the two-element exchange group with εi the permutation exchanging the two mem-
bers of the i th near-pair, and also let E[n] ≡ ∏∈[n]

i Ei . Then the full group of allowed
permutations to be considered is

G = S∗[n]E[n] (5)

If the two sites of the i th near-pair are denoted ia and ib, then εi is just the transposition
(iaib). Much as in the standard treatment at the end of the last section, the allowed iso-
mers correspond to (GS,GL)-double cosets now in G. But care needs to be exercised
with the ligand group B = GL , as the traditional-case for m non-exclusionary ligands
generally gives elements not in the overall group G of now allowed permutations. But
this is fairly easily resolved, on restriction to the part of this conventional group shared
with the now allowed overall group G.

As a first circumstance consider the case of exactly m ligands of a single type
to be substituted, while all the N − m others are the single “unsubstituted” (perhaps
undecarboxylated) type. Then for the ordinary non-exclusionary case the ligand group
is B = GL = S[m] × S[m+1,N ], where [l, m] denotes the set of integers i which are
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≥ l and ≤ n, for instance, with [m + 1, N ] ≡ {m + 1, m + 2, . . . , N }. But if these m
substituent ligands (or decarboxylations) are exclusionary, then

B = GL = (S[m]a × S[n−m,n]a∪[n]b ) ∩ G = (S∗[m] × S∗[m+1,n])E[m+1,n] (6)

where [n]a ≡ {1a, 2a, . . . , na} and [n]b ≡ {1b, 2b, . . . , nb}. The generation of isomers
is equivalent to the generation of the consequent (GS,GL)-double cosets in G.

Enumeration is done by the same general double-coset formula (2) as before, with
ρ now identifying conjugacy classes for the group G of (5) rather than the group
S[N ]. As shown in the appendix, the conjugacy classes of this group of (5) are not so
very much different in nature than those for S[n]—the classes of G involve partitions
of n much as the classes of S[N ] involve partitions of N . The elements of G of (5)
turn out to be of the form P∗εT for P∗ ∈ S∗[n] and for εT ≡ ∏∈T

i εi with T ⊆ [n]
corresponding to some subset of near-pairs. Moreover the conjugacy classes of G are
specified: first by the disjoint cycle structure of P∗ ∈ S∗[n] (viewed as a permutation
of near-pairs), and second by a sequence of “parities” s = ± associated with each
cycle appearing in P∗. For a given cycle C in P∗ there may be different ε j comprising
εT with j also a member of the cycle C , and the parity of the number of such ε j is
the parity s associated to the cycle C . As a consequence, it is convenient to label the
conjugacy classes of G as

ρ ≡ (1ρ1++ 1ρ1−− 2ρ2++ 2ρ2−− 3ρ3++ . . . nρn−− ) (7)

where ρis is the number of length-i cycles with a parity of s (= ±) for the number of
εk associated to a cycle. Moreover there is a simple formula for the order of a class of
G = S∗[n]E[n], namely as

∣∣Cρ

∣∣ = n!
∏

i
{2(i−1)(ρi++ρi−)/(iρi++ρi− · ρi+!ρi−!)} (8)

also as shown in the appendix. Thus the isomer count, for m exclusionary ligands, is

zm = |G|
|GS|

∣∣∣S∗[m] × S∗[m+1,n]E[m+1,n]
∣∣∣

×
G∑

ρ

∣∣GS ∩ Cρ

∣∣
∣∣∣(S∗[m] × S∗[m+1,n]E[m+1,n]) ∩ Cρ

∣∣∣
∣∣Cρ

∣∣ (9)

Noting that |G| = n!2n and
∣∣∣S∗[m] × S∗[m+1,n]E[m+1,n]

∣∣∣ = m!(n − m)!2n−m , the

pre-factor before the summation in (9) becomes

pre-fac = 2m

|GS|
(

n
m

)
(10)
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The
∣∣∣(S∗[m] × S∗[m+1,n]E[m+1,n]) ∩ Cρ

∣∣∣ are obtained by factoring ρ in all possible

ways consonant with the group factors S∗[m] and S∗[m+1,n]E[m+1,n]—that is, the ρi±
parts i± for each i are put together to form two new class labels ρ[m] and ρ[m + 1, n]
for the first m and last n −m permutation indices, with the condition that only i+ parts
go into ρ[m]. Then

∣∣(S∗[m] × S∗[m+1,n]E[m+1,n]) ∩ Cρ

∣∣

=
factors∑

ρ[m],ρ[m+1,n]

∣∣S∗[m] ∩ Cρ[m]
∣∣ · ∣∣S∗[m+1,n]E[m+1,n] ∩ Cρ[m+1,n]

∣∣ (11)

where the terms in this last summation are given as in (4) and (8). This is not really so
different from the computation of

∣∣GL ∩ Cρ

∣∣ as appears in the traditional non-exclu-
sionary circumstance.

But there might be more than one type of exclusionary ligand, or there may be
several types of non-exclusionary ligands. What is relevant here is the pairs of ligands
allowed to share a near-pair of sites—each possible pair of ligands allowed at a near-
pair behaves like a single pair-ligand substitutable at a near-pair (of sites) as a whole.
With the presumption that they are otherwise independent, GS becomes a (disjoint)
product of groups S∗

Bβ
(for ordinary non-exclusionary pair-ligands) and S∗

Bβ
EBβ (for

our current exclusionary ligands). The conjugacy classes of these are characterized
(in accordance with the preceding discussion), along with the order

∣∣GS ∩ Cρ

∣∣ which

involves products of what might be denoted
∣∣∣S∗

Bβ
∩ Cρ

∣∣∣ and
∣∣∣S∗

Bβ
EBβ ∩ Cρ

∣∣∣. This

then completes our general method for the enumeration of such ligand-exclusionary
isomers.

3 Applications to skeletons of different malonate moieties

First, a preliminary example much simpler than that indicated in our target case of
Fig. 1 might be considered. That is, a preliminary very simple skeleton is considered,
involving just 3 malonate moieties, as in Fig. 2. Here the 3-fold dihedral symmetry
group is D3h , or in consonance with Fig. 2,

D3h = {I, σh}C3v

C3v = {I, σv}C3

C3 = {I, C3, C2
3 }

And the different group elements if considered as permutations can be represented as

σh = (1a1b)(2a2b)(3a3b)

σv = (1a)(1b)(2a3a)(2b3b)

C3 = (1a2a3a)(1b2b3b)

where we use a notation with (i1, i2, . . . , im) denoting the cyclic permutation which
takes i1 �→ i2, i2 �→ i3, …, and im �→ i1 . The overall group G = S∗[3]E[3]for
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Fig. 2 A trimalonic-
cyclopropane structure, with the
central atoms of each malanoic
acid being a member of the
cyclopropane ring

exclusionary substitution has

S∗[3] = {I, (123)∗, (132)∗, (12)∗, (23)∗, (31)∗} = C3v

E[3] = E1E2E3
Ei = {I, (iaib)}

where we have used the notation from the appendix with P∗ ≡ Pa Pb for which Pc

denotes just a permutation of the indices [n]c ≡ {1c, 2c, . . . , nc} for c ∈ {a, b}. E.g.,
(123)∗ = (1a2a3a)(1b2b3b) and (12)∗ = (1a2a)(1b2b). Thence it may be seen that
the elements of D3h fall into 6 conjugacy classes

{I }, {C2a, C2b, C2c}, {C3, C−1
3 }, {σh}, {σbc, σca, σab}, {S6, S−1

6 }

which also fall in different G-conjugacy classes, respectively with

ρ = (13+), (1+2+), (3+), (13−), (1−2+), (3−)

in the notation of (7). The relevant data for these classes, along with the numbers of
their elements in D3h and GL = (S∗[m]×S∗[m+1,n])E[m+1,n] is summarized in Table 1.
The central area of this table gives the different values of

∣∣GL ∩ Cρ

∣∣ with the different
rows identified by different substituent numbers m (and associated GL) appearing
in the left-hand central area of the table, while the columns of this central area are
identified by different classes Cρ with the ρ-labels appearing in the top central portion
of the table. The center part of the bottom row of the table gives the different values
of

∣∣GS ∩ Cρ

∣∣, again with the different ρ indicated in the top central portion of the
table. Then for a given number m of substituents, one combines triples of elements
(
∣∣D3h ∩ Cρ

∣∣ ,
∣∣GL ∩ Cρ

∣∣, and
∣∣Cρ

∣∣) together as
∣∣D3h ∩ Cρ

∣∣ · ∣∣GL ∩ Cρ

∣∣ /
∣∣Cρ

∣∣ and
sums on ρ to obtain the sum-part �m of (9). Multiplication by the pre-factor of (10),
then gives the isomer counts zm , all as summarized in the right-hand central portion
of the table. Of course, the isomers for the simple skeleton of Fig. 2 may be easily
worked out by hand, without any of this general group-theoretic machinery. But the
pattern of calculation is the same in the following less trivial examples.

For the hexamalonate-C60 species of Fig. 1, the skeletal symmetry group is of a
tetrahedral symmetry. If improper rotations are precluded, then the group is just the
proper-rotational order-12 tetrahedral group T, and with its use, one identifies ste-
reo-isomers (for which chiral structures are distinguished). If the improper rotations
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Table 1 Enumeration of exclusionary isomers for the n = 3 D3h -skeleton

m
∣∣GL ∩ Cρ

∣∣ ρ Pre-fac �m zm

(13+) (1+2+) (3+) (13−) (1−2+) (3−)

0
∣∣Cρ

∣∣ 1 6 8 1 6 8 1/12 12 1

1
∣∣{I, σv}E{2,3} ∩ Cρ

∣∣ 1 2 0 0 0 0 1/2 2 1

2
∣∣{I, σ ′

v}E3 ∩ Cρ

∣∣ 1 1 0 0 1 0 1 2 2

3
∣∣C3v ∩ Cρ

∣∣ 1 3 2 0 0 0 3/2 3 2
∣∣GL ∩ Cρ

∣∣ =∣∣D3h ∩ Cρ

∣∣
1 3 2 1 3 2 Total = 6

are included, then the group Th = T · {I, î} includes the inversion î , and with its
use, one identifies structural (or constitutional) isomers (where enantiomers are not
distinguished). The elements of Th fall into 6 conjugacy classes

{I }, {C2x , C2y, C2z}, {C3a, C−1
3a , C3b, C−1

3b , C3c, C−1
3c , C3d , C−1

3d },
{î}, {σyz, σzx , σxy}, {S3a, S−1

3a , S3b, S−1
3b , S3c, S−1

3c , S3d , S−1
3d }

To treat the traditional case where the ligands are non-exclusionary, say as concerns the
formation of methyl esters, these elements then are identified to different conjugacy
classes of S[N ]. Indeed, they occur in just 5 S[N ]-conjugacy classes, as

ρ = (112) , (26), (34), (26), (1424), (62)

If there are m methylations (say for the first m ligands), then the ligand group is
GL = S[m] × S[m+1,N ]. The resultant (nonexclusionary) computations paralleling
those of the preceding (exclusionary) case then appear as in Table 2, which however
does not show rows for more than n (= N/2 = 6) substituents, since we know
(because of the symmetry between interchange of substituted and unsubstituted sites)
that the later isomer counts are trivially given via zm = zN−m . Here even for m ≤ 6
certainly many of these have a pair of methyl groups in the same malonic acid moiety.
The parallel to the computation of Table 1 is seen to be quite close, and the summary
in this Table 2 may be observed to closely parallel the usual Polya-theoretic approach
(by way of cycle indices).

Next consider the exclusionary case, as with decarboxylation where removal of CO2
from any of the carboxylic acid group inhibits decarboxylation at the second carbox-
ylic acid group of that malonic-acid moiety. Again Cerrar et al. [25] have prepared the
water-soluble hexamalonate-C60 species, which further they have found under mildly
basic conditions releases CO2 molecules up to the point of 6 of them, but no more,
and each CO2 from different malonate groups. Thence our modification of the Polya
enumeration applies. The overall group is G = S∗[6]E[6], and the elements of Th as
already identified may be verified to fall into six different G-conjugacy classes, as
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Table 2 For non-exclusionary isomers of the N = 12 Th -C60skeleton

m
∣∣GL ∩ Cρ

∣∣ ρ Pre-fac �m zm

(16+) (26) (34) (1424) (62)

0
∣∣Cρ

∣∣ 1 10395 246400 51975 6652800 1/24 24 1

1
∣∣(S{1} × S[2,12]) ∩ Cρ

∣∣ 1 0 0 17325 0 1/2 2 1

2
∣∣(S{1,2} × S[3,12]) ∩ Cρ

∣∣ 1 945 0 7875 0 11/4 20/11 5

3
∣∣(S[1,3] × S[4,12]) ∩ Cρ

∣∣ 1 0 4480 4725 0 55/6 78/55 13

4
∣∣(S[1,4] × S[5,12]) ∩ Cρ

∣∣ 1 315 0 3255 0 165/8 72/55 27

5
∣∣(S[1,5] × S[6,12]) ∩ Cρ

∣∣ 1 0 0 2625 0 33 38/33 38

6
∣∣(S[1,6] × S[7,12]) ∩ Cρ

∣∣ 1 225 1600 2475 14400 77/2 100/77 50
∣∣GL ∩ Cρ

∣∣ = ∣∣Th ∩ Cρ

∣∣ 1 4 8 3 8 Total = 220

Table 3 For exclusionary isomers of the N = 12 Th -C60 skeleton

m
∣∣GL ∩ Cρ

∣∣ ρ Pre-fac �m zm

(16+) (12−22+) (32+) (23+) (12+12−2+) (6+)

0
∣∣Cρ

∣∣ 1 180 640 120 180 3840 1/24 24 1

1
∣∣(S{1} × S[2,6]E[2,6]) ∩ Cρ

∣∣ 1 0 0 0 60 0 1/2 2 1

2
∣∣(S[2] × S[3,6]E[3,6]) ∩ Cρ

∣∣ 1 12 0 12 18 0 5/2 8/5 4

3
∣∣(S[3] × S[4,6]E[4,6]) ∩ Cρ

∣∣ 1 0 16 0 9 0 20/3 27/20 9

4
∣∣(S[4] × S{5,6}E{5,6}) ∩ Cρ

∣∣ 1 3 0 6 6 0 10 6/5 12

5
∣∣(S[5] × S{6}E{6}) ∩ Cρ

∣∣ 1 0 0 0 0 0 8 1 8

6
∣∣S[6] ∩ Cρ

∣∣ 1 0 40 15 0 120 8/3 7/4 5
∣∣GL ∩ Cρ

∣∣ = ∣∣Th ∩ Cρ

∣∣ 1 3 8 1 3 8 Total = 40

ρ = (16+), (12−22+), (32+), (23+), (12+12−2+), (6+)

Following the discussion at the end of the preceding section, and taking the decar-
boxylated malonic acid moieties to be the first m (e.g., in the reference structure),
it is seen that these exclusionary “ligands” manifest a symmetry S∗[m], while the
remaining n − m pair-ligands consist of fully undecarboxylated malonic acid moie-
ties and manifest a symmetry S∗[m+1,n]E[m+1,n]. Thus the ligand symmetry group is
GL = S∗[m]×S∗[m+1,n]E[m+1,n]. The resultant enumeration is reported in Table 3. One
can see the parallel to the calculation for the earlier simpler D3h skeleton (summarized
in Table 1), as well as the parallel to the calculation for the “standard” Polya enumer-
ation (as in Table 2) for the present Th-symmetry buckminsterfullerene derivative.
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Fig. 3 A dimer of pentamalonic-C60 units, having an overall D2h symmetry. The central bonds indicate
the two single bonds interconnecting the two C60 moieties. Again the O and H atoms on the peripheral
malonic acid moieties are suppressed

But these ideas can be extended to yet further cases with exclusionary locationing
of ligands. A slightly larger case is found in the deca-malonic acid derivative of two
Buckminsterfullerenes joined to one another by a pair of single bonds to adjacent
sites where previously we placed a 6th malonate, as in Fig. 3. The consequent skeletal
symmetry group is just the dihedral group D2h = D2 · {I, î}, or if chiral structures are
to be distinguished, it is just D2. The overall group is G = S∗[10]E[10], and the eight
elements of D2h may be seen to fall into five different G-conjugacy classes, as

ρ = (110+ ), (14+12−22+), (12+14−22+), (12−24+) for I, σx , σy, C2z

& ρ = (25+) for C2x , C2y, σz, î

Since D2h is smaller than the hexamalanato-C60 Th group, the application is simpler
in some ways, though the number of skeletal positions is nearly twice as great, and
the consequent isomer counts are somewhat larger, as seen in Table 4, which again
parallels the earlier tables. Though with care and effort one might attempt the counts
of Table 3 by hand, the results of Table 4 surely are beyond such traditional hand
manipulation and generation of structures.

Further, though our Tables 1–4 have been illustrated for structural isomers, using
a symmetry group including all improper rotations, the data of these tables readily
allow the construction of corresponding tables for stereoisomers, using the symmetry
group exclusively corresponding to proper rotations. The group of proper rotations is
a subgroup, of half the size, so that all that changes are the intersection numbers in the
bottom row of the tables, as well as the prefactors, which are all just twice as large.

It may be noted that there are other more brute-force conceptually simple means
by which to generate the isomer counts. So long as the number of substitution sites
is not overly great, one may constructively generate isomers. And this has been done
[27], to check the above enumerations, and to deal further with individual properties
and the underlying reaction network, at least for the hexamalono-C60 case.
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4 Conclusion

The classical Polya-theory has been nicely extended within an alternative [14] dou-
ble-coset framework to encompass a special circumstance of exclusionary locationing
of ligands when there is but a single neighbor skeletal site from which like ligands are
to be excluded. An illustration has been made for the case of malonic acid residues
arranged on different skeletons, including the Th-buckminsterfullerene arrangement,
experimentally realized in the work of Cerar et al. [25]. But we have applied it to
several other species, including those of Figs. 2–5, though computational tabulations
were not explicitly displayed for the species of Figs. 4–5. The various overall isomer
counts for both exclusionary and non-exclusionary cases are summarized in Table 5
for all the different skeletons entertained in the preceding section. In this table the
counts of structural (or constitutional) isomers are given as a sum of two numbers
a and c, with a the number of isomers which are achiral and c the number which
are chiral (enantiomeric) pairs. That is, the computations of the earlier section were
also repeated using the more discerning achiral skeletal groups GS comprised solely
from proper rotations. The resultant stereoisomer counts are a + 2c, while the struc-
tural isomer counts are a + c, whence one sees that the differences between these
two corresponding isomer counts give c. From Table 5, ones sees that when for our
two C60-based skeletons, the number of ligands is one less than the maximum, every
isomer is chiral.

It may be mentioned that Polya’s “cycle-index” approach might also be extended to
deal with the present case of exclusionary ligands. With the special type of exclusion

Fig. 4 A tetramalonic-
cyclobutane structure, with the
central atoms of each malanoic
acid being a member of the
cyclobutane ring

Fig. 5 A pentamalonic-
cyclopentane structure,
paralleling those of Figs. 2 and 4
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Table 5 Summary counts for the various structures

m D3h D4h D5h Th D2h

Ex Nonex Ex Nonex Ex Nonex Ex Nonex Ex Nonex

0 1 + 0 1 + 0 1 + 0 1 + 0 1 + 0 1 + 0 1 + 0 1 + 0 1 + 0 1 + 0
1 1 + 0 1 + 0 1 + 0 1 + 0 1 + 0 1 + 0 1 + 0 1 + 0 3 + 1 3 + 1
2 1 + 1 2 + 1 3 + 1 4 + 1 2 + 2 3 + 2 2 + 2 3 + 2 14 + 19 17 + 19
3 2 + 0 2 + 1 2 + 1 3 + 2 4 + 1 4 + 3 2 + 7 5 + 8 20 + 110 35 + 125
4 2 + 1 4 + 0 7 + 3 3 + 3 7 + 7 3 + 9 9 + 18 54 + 406 105 + 570
5 1 + 0 3 + 2 4 + 0 6 + 10 0 + 8 10 + 28 44 + 986 164 + 1856
6 1 + 0 4 + 1 7 + 7 2 + 3 14 + 36 84 + 1662 340 + 4720
7 1 + 0 4 + 3 10 + 28 32 + 1904 420 + 9480
8 1 + 0 3 + 2 9 + 18 56 + 1434 662 + 15494
9 1 + 0 5 + 8 0 + 640 658 + 20666
10 1 + 0 3 + 2 16 + 128 822 + 22778
11 1 + 0 658 + 20666
12 1 + 0 662 + 15494
13 420 + 9480
14 340 + 4720
15 164 + 1856
16 105 + 570
17 35 + 125
18 17 + 19
19 3 + 1
20 1 + 0

applying only to disjoint pairs, one may imagine a line drawn between the two sites
of each such near-pair, and inquire about the symmetry classes of ways to orient dif-
ferent numbers of these lines—an orientation being a direction for the line segment,
indicated by an arrow placed on the line segment. One may imagine that unoriented
line segments in which neither site is occupied by a ligand, while for an oriented line
segment the arrow points from the site occupied by an exclusionary ligand, to the other
unoccupied member of the pair. In any event some elaboration has been made [28] of
classical Polya theory to deal with oriented line-segment problems not unlike this.

Also the method as outlined here applies with greater numbers of types of ligands,
just entailing further choices for the ligand group GL . But it might also be mentioned
that much the same idea applies with a greater number of exclusions manifested by
an exclusionary ligand, so long as the sets of sites which are judged as neighbors fall
into disjoint sets of otherwise mutual neighbors. That is, one deals with near-triples,
or near-quadruples, etc. in place of the present consideration of near-pairs. A nice
example of exclusionary substitution occurs at each C-atom of a hydrocarbon when
the substituting ligand is OH.

At the same time there remain many unresolved problems of isomerism character-
ization. A first problem is the development of a general systematic scheme to treat
isomerism when the exclusionary ligands at a skeletal site have several neighbor skel-
etal sites from which like ligands are excluded but without the subsets of mutually
neighboring exclusionary sites falling into disjoint subsets. Also there is a question of
the problem [18] for bidentate ligands in requiring the 2 ligation sites of such a biden-
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tate species to be located at neighboring sites—again for the general case when there
is more than one neighbor site of the skeleton. Indeed these two problems are com-
plementary, with both viewable as generally demanding attention to “connectivity”
(of skeletal and ligand sites). That is, both problems demand incorporation of infor-
mation beyond the (ordinary) symmetry of the skeleton and ligands—it here being
understood that “symmetry” refers both to geometric symmetry and to symmetry of
ligand identity.

Finally beyond isomer enumeration, the use of the double-coset correspondents
could be individually generated, such as done by Brown et al. [29,30]. Indeed else-
where we deal [27] with individual generation to address further questions for the
Th-hexamalanato-C60 case. One such further (fundamental combinatorial) question
concerns which m-ligand isomers give rise to each given m + 1-ligand isomer. Thus
both as regards extensions of enumerative procedures, and as regards further charac-
terization, much remains to be done with (isomer) combinatorial theoretics.

Acknowledgement Acknowledgement is made (through Grant BD-0894) to the Welch Foundation of
Houston, Texas.

Appendix—G = S∗
[n]E[n] and its conjugacy classes

First, a more explicitly detailed designation of the various groups may be made, for the
case when there are N sites partitionable into n = N/2 near-pairs. If the near-pairs are
designated by the integers [n] ≡ {1, 2, . . . , n}, the two sites of the i th near-pair might
be distinguished as ia and ib, i ∈ [n]. Then in correspondence to each permutation
P in S[n], there are corresponding permutations Pa ∈ S[n]a and Pb ∈ S[n]b (with
[n]c ≡ {1c, 2c, . . . , nc}, c ∈ {a, b}) such that

Pa jc =
{

(P j)a, c = a
jb, c = b( �= a)

& Pb jc =
{

ja, c = a( �= b)

(P j)b, c = b

Then S∗[n] = {Pa · Pb
∣∣P ∈ S[n]} . Also Ei = {1, εi } with εi the permutation (iaib)

that exchanges ia & ib.
It is clear that the two component groups S∗[n] and E[n] have only one element in

common, the identity I . If P is a simple permutation of the indices [n], and P∗ is the
corresponding permutation of near-pairs, then one sees that

P∗εU = (P∗εU P∗−1)P∗ = εPU P∗

where εU ≡ ∏∈U
i εi , U ∈ [n], and where PU ≡ {Pi |i ∈ U } . Thus the set of P∗εU

are closed under multiplication and so form a group. Thus we have:

Proposition 1 The elements of S∗[n]E[n] form a group and are uniquely specified in
the form P∗εU , for P∗ ∈ S∗

n and εU ∈ E[n] for U ⊆ [n].
Clearly now P ∈ S[n] has a disjoint cycle decomposition into a set DP of disjoint

cycles, and one has P∗ = ∏∈DP
C C∗. Moreover, such a cycle involves a subset of
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elements of [n], and we identify this subset by [C], whence a corresponding factoriza-
tion of an arbitrary element of E[n] is possible as εU = ∏∈DP

C εU∩[C] , with it being
understood that if U ∩ [C] is the empty set ∅, then ε∅ = I . Thus we have a general
factorization:

Proposition 2 Each element P∗εU of S∗[n]E[n] with P = ∏∈DP
C C is a unique product

of factors C∗εU∩{C} each acting on disjoint near-site sets [C] for C ∈ DP .

To understand the conjugacy class structure of G, one then considers conjugation
of these different factors. For a general Q ∈ S[n] and a general cyclic permutation
C = (i1i2 . . . ik) , k ≥ 1, it is known that Q(i1 . . . ik)Q−1 = (Qi1 . . . Qik), which we
denote as CQ . Then the result of conjugation by Q∗ ∈ S∗[n] is

Q∗ · C∗εU∩[C] · Q∗−1 = C∗
QεQU∩Q[C]

Moreover, for a general εT ∈ E[n], one has

εT · C∗εU∩[C] · ε−1
T = C∗ · C∗−1εT C∗ · εU∩[C]εT = C∗ · εC−1T εU∩[C]εT

But the εi all commute with one another and are involutary (ε2
i = I ), so that the

resulting product of the various εR is relatively simple. First, the εi factors in εT with
i /∈ [C] are not moved by C , so that these factors cancel between εC−1T and εT , and
we may assume without loss of generality that T ⊆ [C], and in fact because of the
“independence” of the different single near-pair factors εi , we can consider them one
at a time. First in the trivial case that |[C]| = 1, one has εi Cε−1

i = εi Cεi = ε2
i = I

and εi · Cεi · ε−1
i = εi , so that this conjugation does not change parity. Then in the

non-trivial case when |[C]| �= 1, it is seen that C−1i and i must be distinct for i ∈ [C],
whence for εi · C∗εU · ε−1

i = C∗ · εC−1iεU εi , just 4 different things can happen:

• first, both i ∈ U and C−1i ∈ U , whence εC−1iεU εi = εU\{i,C−1i} (where U\V
denotes the subset of U with any elements of V removed); or

• second, i ∈ U and C−1i /∈ U , whence εC−1iεU εi = ε{C−1i}∪U\{i}; or
• third, i /∈ U and C−1i ∈ U , whence εC−1iεU εi = ε{i}∪U\{C−1i}; or
• fourth, i /∈ U and C−1i /∈ U , whence εC−1iεU εi = ε{i,C−1i}∪U .

That is, the number of ε j which survive in εC−1iεU εi is changed by −2, 0, or +2
from the number in εU , so that the parity s of this number is unchanged. Also if one
chooses i ∈ U , it is seen that the result for εC−1iεU εi either has 2 fewer such ε j or else
moves one of the original ε j in εC−1iεU εi one position around the cycle C—and such
a conjugacy transformation may be repeated to move the moved index around further
till it impinges next to another remaining εk , whereafter an application of another con-
jugacy transformation could be applied to eliminate εk and εk±1, and thereby diminish
their number by 2 again. Thus given any number m of ε j in εU their number can be
reduced to either 0 or 1 as m is of even or odd parity, using a sequence of conjugacy
transformations by suitable εi . But also such conjugacy transformations are seen to
be able to increase the number of ε j up to a maximal set of the same parity. Thus it
is seen that conjugacy transformations conserve the disjoint cycle structure and that
they conserve the parity of the number of ε j associated to each such cycle.
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Theorem 3 The classes of S∗[n]E[n] are identified uniquely to two things:

• first, the disjoint cycle structure of the earlier propositions; and
• second, the parity of the number of ε j associated to each such disjoint cycle.

Thus the conjugacy classes are neatly identified as in Eq. (7).
Now we address the order of these conjugacy classes. First note that the num-

ber of ways to partition the digits of [n] into
∑

i (ρi+ + ρi−) distinguished sets
such that there are ρi+ + ρi−sets of size i , is given by the multinomial coefficient
n! /∏

i (i !)(ρi++ρi−) . But if the ρis sets, for particular i ∈ [n] and s ∈ {+,−},
are not to be distinguished, then this reduces this count by division by a factor∏

i ρi+!ρi−!. That is, we have n!/{∏i (i !)(ρi++ρi−)ρi+!ρi−!} ways to partition [n]
into ρi+ + ρi−sets of size-i sets with those associated to the same parity s not dis-
tinguished, while those associated to different parities are. From any one of these
size-isets [C] associated to a parity s , there are (i − 1)! possible i-cycles and 1

2 · 2i

possible members of E[C] consisting of a parity-s number of factors εi , i ∈ [C]. That
is, for a given partitioning of [n] involving ρis size-i sets associated to parity s, there
are (i − 1)!ρis 2(i−1)ρis possible group elements for each i and s. Putting the partition
count n!/{∏i (i !)(ρi++ρi−)ρi+!ρi−!} together with the associated overall group-ele-
ment count of

∏
i {(i − 1)!2(i−1)}(ρi++ρi−), we obtain:

Theorem 4 The order of the conjugacy class ρ ≡ (1ρ1++ 1ρ1−− 2ρ2++ 2ρ2−− 3ρ3++ . . . nρn−− )

of S∗[n]E[n] is given by
∣∣Cρ

∣∣ = n!∏i {2(i−1)(ρi++ρi−)/(iρi++ρi− · ρi+!ρi−!)}.
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